College Algebra

 A geometric sequence is a number series in which each successive term results from multiplying or *dividing** the previous term by a constant value called a *common ratio, r.*

Formula for calculating
$$r$$
: $\mathbf{r}_{n} = \frac{\mathbf{a}_{n}}{\mathbf{a}_{n-1}}$ *n designates the term number (1st, 2nd, 3rd, etc).

Applying this formula to the given geometric sequence (16, -4, 1, $\frac{1}{4}$, ...)

$$r_2 = \frac{-4}{16} = -\frac{1}{4}, r_3 = \frac{1}{-4} = -\frac{1}{4}, r_4 = \frac{-1/4}{1} = -\frac{1}{4}$$

reveals a common ratio (r) of -1/4.

Formula for the nth term of a geometric sequence: $a_n = a_1 r^{n-1}$

To find the 5th term: $a_5 = 16(-1/4)^{5-1} = 16(-1/4)^4 = 16(1/256) = 16/256 = 1/16$

*Without knowing the formulas above, you might also observe that dividing each term by -4 results in the next term: $\frac{16}{-4} = -4$, $\frac{-4}{-4} = 1$, $\frac{1}{-4} = -\frac{1}{4}$, $\frac{-1/4}{-4} = \boxed{\frac{1}{16}}$

Try these sites for more information and practice with geometric sequences: http://www.mathguide.com/lessons/SequenceGeometric.html http://www.purplemath.com/modules/series3.htm http://www.regentsprep.org/Regents/math/algtrig/ATP2/GeoSeq.htm

2. Let t = 7 days and plug this value into each equation.

$$A(7) = 7^{2} + 2(7) = 49 + 14 = \underline{63}$$
$$B(7) = 10(7) = \boxed{\frac{70}{\text{Maximum Output}}}$$

3. From the table, f(3) = 2, so substitute 2 for f(3) in g(f(3)).

From the table, g(2) = -3

4. The *least common denominator* of the fractional exponents is **6**. Multiply by a fraction equivalent to 1 in order to make all denominators the same.

$$X^{1/2(3/3)} y^{2/3(2/2)} z^{5/6} = x^{3/6} y^{4/6} z^{5/6} =$$

The *denominator* of each fractional exponent is the *root* of each variable. Rewrite the expression using *radical* notation:

$$\sqrt[6]{x^3} * \sqrt[6]{y^4} * \sqrt[6]{z^5} = \sqrt[6]{x^3 y^4 z^5}$$

Try these sites for rules of exponents and more practice with powers and roots:

http://oakroadsystems.com/math/expolaws.htm

http://www.thegreatmartinicompany.com/exponents/exponents-radicals-home.html

http://www.intmath.com/Exponents-radicals/Exponent-radical.php

5.
$$A-B = \begin{bmatrix} 2 & -4 \\ 6 & 0 \end{bmatrix} - \begin{bmatrix} -2 & 4 \\ -6 & 0 \end{bmatrix} = \begin{bmatrix} (2-(-2)) & (-4-4) \\ (6-(-6)) & (0-0) \end{bmatrix} = \begin{bmatrix} 4 & -8 \\ 12 & 0 \end{bmatrix}$$

Try this site for more information and practice with *matrices*:

http://www.maths.surrey.ac.uk/explore/emmaspages/option1.html

6. Use these facts to compare possible values: $f(x) = 2^x$, c > 1, x > 1

a. If
$$g(x) = cx$$
, then $f(g(x)) = 2^{cx}$; $cx > 1$, so $2^{cx} > 2$.

- b. If g(x) = c/x, then $f(g(x)) = 2^{c/x}$; c/x > 0, so $2^{c/x} > 1$.
- c. If g(x) = x/c, then $f(g(x)) = 2^{x/c}$; x/c > 0, so $2^{x/c} > 1$.
- d. If g(x) = x c, then $f(g(x)) = 2^{x-c}$; even if c is greater than x, making the the exponent "x c" negative, 2^{x-c} is < 1 but still > **0**.
- e. If $g(x) = \log_c x$, then $f(g(x)) = 2^{\log_c x}$. Let $\log_c x = y$ and $c^y = x$; since X > 1, y (or " $\log_c x$ ") > 0. A negative exponent would yield a fraction, and an exponent of 0 would yield 1. Therefore, $2^{\log_c x} > 0$.

g(x) = cx yields the greatest value for f(g(x)). 2^{cx} will always result in a value greater than 2.

Try this site for more information about functions:

http://www.themathpage.com/aprecalc/functions.htm

Try this site for more information about logarithms:

http://people.hofstra.edu/Stefan_Waner/realworld/calctopic1/logs.html

7. f(x+y)=f(x)+f(y) holds for all real numbers x and y.

For *f(0)*, *x+y=0*; *x=-y* and *y=-x*. Two cases follow from this information.

1) **x** and **y** are the same number with opposite signs (2 and -2, 5 and -5, etc.)

Substituting -x for y, f(0) = f(x+(-x)) = f(x-x) = f(x) + f(-x).

However, possible values for *f(0)* cannot be verified before looking

at the next case.

Substituting **x** for zero (f(0 + 0) = f(x + x)) reveals a fact that can be used to prove f(0) = 0 when the variables have the same non-zero value with opposite signs.

f(x + x) = f(x) + f(x) = 2f(x);
f(x + x) can also be expressed as f(2x), so f(2x) = 2f(x).

Recall f(0) = f(x+(-x)) = f(x-x) = f(x) + f(-x).

If
$$f(2x) = 2f(x)$$
, then $f(-x) = -f(x)$.

So, f(0) = f(x) - f(x) = 0. Again, the value of f(0) is zero! *Solution above provided by an anonymous tutor at <u>www.mathnerds.com</u>, 8/19/2008.

8. Powers of *i* repeat the following pattern at intervals of 4:

$$i^{4} = \sqrt{-1} = i$$

$$i^{5} = i$$

$$i^{2} = \sqrt{-1} * \sqrt{-1} = -1$$

$$i^{6} = -1$$

$$i^{2} =$$

Determine the sum of one interval: $i + i^2 + i^3 + i^4 = i + (-1) + (-i) + 1 = i - 1 - i + 1 = 0$

That means the sum of the first 4 complete sequences is zero. So, it is necessary only to calculate the sum of the first 3 terms of a sequence:

$$i^{21} + i^{22} + i^{23} = i + (-1) + (-i) = i - 1 - i = -1$$

Try the following site for more help with powers of *i* :

http://www.regentsprep.org/Regents/mathb/3c3/powerlesson.htm

9. The formula below is needed to find specific terms in a sequence:

$$a_n = a_1 + (n-1)d$$

The first term, a_1 , is 3; however, n, the number of a specific term and d, the common difference between consecutive terms, are unknown.

Two other given values may be used to find n and d: a specific term (the last), or a_{n} , is **136**, and the sum of the total number of terms is **1,390**. These values can be plugged into the following formula to find n, number of the last term (**136**):

$$S_n = \frac{1}{2} * n(a_1 + a_n)$$

 S_n is the sum 1,390, a_1 is 3, and a_n is 136. Plugging in these values will yield n, the number corresponding to the term 136.

$$1,390 = \frac{1}{2} n(3 + 136)$$

$$2(1,390) = \frac{1}{2} n(139) 2$$

$$\frac{2780}{139} = \frac{n(139)}{139}$$

$$n = 20$$

Multiply both sides of the equation by **2** to eliminate the fraction (**1/2**).

Divide both sides by **139** to find **n**.

Continued . . .

Now, substitute all known values into the formula for the *nth* term to find *d*.

a ₂₀ = 3 + (20 -1)d	
<u>136</u> = <u>3</u> + 19d	Subtract 3 from both sides.
133 = 19d	Then divide by 19.
19 19 d = 7	
	$\frac{136}{-3} = \frac{3}{-3} + 19d$ $\frac{-3}{-3} = \frac{-3}{-3}$

 $a_1 = 3$, which was given. $a_2 = 3 + 7 = 10$ $a_3 = 10 + 7 = 17$ First three terms are 3, 10, and 17.

Geometry

1. Use angle facts to determine which angles are equal.

Try this site for more information about angles and parallel lines:

http://www.ies.co.jp/math/products/geo1/appl ets/kakuhei/kakuhei.html $a = \angle b$ because vertical angles created by intersecting lines are equal.

 $\angle a = \angle d$ because they are corresponding angles, or angles created when a line intersects two parallel lines.

If $\angle a$ equals both $\angle b$ and $\angle d$, then $\boxed{a = a = a = a$.

* $\angle c = \angle e$ (corresponding angles), but they do not equal any of the three other angles identified. 2. Use facts about the sum of the angles of a triangle and degree measurement of a straight line.

The sum of all angles of a triangle equals **180°**. So the sum of the two lower angles of **\Delta ABC** is **180° – 40° = 140°**.

Since **AB** and **AC** are equal, \angle **ABC** = \angle **ACB** and they each measure $\frac{1}{2}$ of **140°**, or **70°** each.

A straight line equals 180° , so $\angle ACD = 180^\circ - 70^\circ = 110^\circ$.

Try these sites to investigate the sum of angles in a triangle and the sum of angles that form a straight line.

http://argyll.epsb.ca/jreed/math9/strand3/triangle_angle_sum.htm

http://www.walter-fendt.de/m11e/anglesum.htm

3. The perimeter of the pasture is made up of *twenty 10 ft*. segments (which is the distance between each pair of fence posts), plus one segment that is the *hypotenuse* of a right triangle having two legs of *10 ft*. each.

Use the Pythagorean Theorem to find c, the hypotenuse: $a^2 + b^2 = c^2$ $10^2 + 10^2 = c^2$ $100 + 100 = c^2$ $200 = c^2$ $\sqrt{200} = c$ $\sqrt{25 \times 4 \times 2} = c$ $(5 \times 2)\sqrt{2} = c$ $10\sqrt{2} = c$ 4. Use *Area = Length X Width* to find the area of the rectangular garden: *A = 16 X 9 = 144*.

For a square, all sides are equal, so **Length = Width**, or $A = s^2$.

Let
$$s^2 = 144$$
; therefore, $s = \sqrt{144}$, and $s = 12$

5. Use the *Pythagorean Theorem* to solve for the unknown leg length of the right triangle:

 $a^2 + b^2 = c^2$ (a and b are leg lengths, and c is the hypotenuse)

Let *a* = the unknown leg length. Leg *CB* = 3 and hypotenuse *AB* = 6.

$$a^2 + 3^2 = 6^2$$
, $a^2 + 9 = 36$, $a^2 = 36 - 9$, $a^2 = 27$,
 $a = \sqrt{27} = \sqrt{9 \times 3} = 3\sqrt{3}$

6. Arc length is the length of the curve opposite the central angle. The ratio of the degrees in the central angle (30°) to the degrees in the whole circle (360°) is proportional to the ratio of the arc length (6) to the circle's circumference ($2\pi r$).

 $\frac{central angle^{\circ}}{whole \ circle^{\circ}} = \frac{arc \ length}{circumference}, \quad \frac{30^{\circ}}{360^{\circ}} = \frac{6}{2\pi r}. \text{ Solve for } r \ (radius).$ Cross multiply: $\frac{30^{\circ}}{360^{\circ}} \neq \frac{6}{2\pi r}, \quad 30(2\pi r) = 360(6), \quad 60\pi r = 2160$ $r = \frac{2160}{60\pi}, \quad r = \frac{36}{\pi}$

Try this site for more information about central angles and arc length: http://articles.directorym.com/Arc_Length_And_Sectors-a1047348.html

7. Use Volume = Length X Width X Height. $V_1 = 2 \ X \ 10 \ X \ 6 = 120 \ sq.$ in. and $V_2 = 3 \ X \ 5 \ X \ h = 15h.$ $V_1 = V_2$, so 120 = 15h.

Solve for h:
$$\frac{120}{15} = \frac{15h}{15}$$
, $h = \frac{120}{15}$, $h = 8$ in.

8. Use $A = \pi r^2$ to find the areas of the larger circle and the smaller circle. The radius of the larger circle is equal to the diameter of the smaller circle: 2r = 2(5) = 10.

9. Find the areas of the middle *rectangle* and the *right triangles* on each end.

Alternatively, use the formula for the Area of a trapezoid:

$$\mathbf{A} = \left(\frac{sum \ of \ two \ bases}{2}\right);$$

a is the altitude, or height.

$$A = 4 \left(\frac{10+16}{2}\right) = 4 \left(\frac{26}{2}\right) = 4*13 = 52$$

Try this site for more information about area of a trapezoid:

http://www.mathopenref.com/trapez oidarea.html **10.** The triangles are similar, so their sides are proportional.

Try these sites for information about similar triangles: <u>http://www.regentsprep.org/Regents/</u> <u>Math/similar/Lstrategy.htm</u> http://www.mathopenref.com/similar

triangles.html

11.

Use the ratios of the known side lengths of each triangle to set up a proportion.

$$\frac{\text{shorter side of } \Delta 1}{\text{longer side of } \Delta 1} = \frac{\text{shorter side of } \Delta 2}{\text{longer side of } \Delta 2}$$

 $\frac{18}{15+x} \frac{6}{x}$

Cross multiply and solve for **x**, which represents the length of the tree's shadow.

$$18x = 6(15 + x); \ 18x = 90 + 6x; \ 12x = 90; \ x = \frac{90}{12} = 7.5$$

Or,

 $\frac{shorter\ side\ of\ \bigtriangleup\ 2}{shorter\ side\ of\ \bigtriangleup\ 1} = \frac{longer\ side\ of\ \bigtriangleup\ 2}{longer\ side\ of\ \bigtriangleup\ 1}$

$$\frac{6}{18} \xrightarrow{x} \frac{x}{15+x}$$

 $6(15 + x) = 18x; \ 90 + 6x = 18x; \ 90 = 12x; \ x = \frac{90}{12} = 7.5$

Find areas of larger and smaller right triangles (Δ DFG and Δ EFG, respectively) and subtract; the difference is the area of Δ DEG.

Area of a triangle = $\frac{1}{2}$ base * height = $\frac{b*h}{2}$

The height of both right triangles is 10.

$$\Delta DFG = \frac{19*10}{2} = 19*5 = 95$$
$$\Delta EFG = \frac{7*10}{2} = 7*5 = 35$$

 $\Delta DFG - \Delta EFG = \Delta DEG$

95-35=60 Area of $\triangle DEG = 60$ sq. units

Trigonometry

1. The trigonometric functions relate an angle of a right triangle to the ratio of a pair of the triangle's sides. See the diagrams and chart below. $*\Theta$ (theta) is the angle measurement in degrees.

sin O	cos O	tan Ə	csc O	sec O	cot O
opp.	adj.	opp.	hyp.	hyp.	adj.
hyp.	hyp.	adj.	opp.	adj.	opp.

Try these sites for more information on trigonometry and trigonometric functions:

http://www.sparknotes.com/testprep/books/act/chapter10section7.rhtml

http://www.pballew.net/PCU2.pdf

http://www.sosmath.com/trig/Trig2/trig2/trig2.html

http://math.aa.psu.edu/~mark//Math140/trigident.pdf

2. If
$$\sin \alpha = \frac{opp}{hyp}$$
, $= \frac{12}{13}$ and $\cos \alpha = \frac{adj}{hyp}$, $= \frac{5}{13}$, then $\tan \alpha = \frac{opp}{adj}$, $= \frac{12}{5}$

adjacent
$$b = \sqrt{3}$$

Use $sin x^\circ = \frac{opp.}{hyp.} = \frac{1}{2}$ to identify lengths of two of the a right triangle's three sides.

Then use the Pythagorean formula to find the third side: $a^2 + b^2 = c^2$; $1^2 + b^2 = 2^2$; $1 + b^2 = 4$; $b^2 = 3$; $b = \sqrt{3}$.

$$\cos x^{\circ} = \frac{adj}{hyp} = \frac{\sqrt{3}}{2}$$

Let x = the height of the balloon from ground.
Use
$$\tan \Theta^{\circ} = \frac{opp.}{adj.}$$
:
 $\tan 57^{\circ} = \frac{1.3}{x}$; $x(\tan 57^{\circ}) = x(\frac{1.3}{x})$; $\frac{x(\tan 57^{\circ})}{\tan 57^{\circ}} = \frac{1.3}{\tan 57^{\circ}}$;
 $x = \frac{1.3}{\tan 57^{\circ}}$

On the *unit circle*, the *y* coordinate reaches a maximum value of **1** at $\theta = 90^\circ$, or $\pi/2$ *radians*. Therefore, *y* = *sin* 2*x* = 1, and the angle measurement 2*x* = $\pi/2$. Solve for *x* by dividing both sides of the equation by 2.

$$\frac{2x}{2} = \frac{\frac{\pi}{2}}{2}, \ x = \frac{\pi}{2} \times \frac{1}{2}$$

*Multiply by reciprocal of divisor.

$$x=rac{\pi}{4}$$

Try this site for more information about the unit circle:

http://www.humboldt.edu/~dlj1/PreCalculus/Images/UnitCircle.html

Try this link for more information about the relationship between degrees and radians:

http://math.rice.edu/~pcmi/sphere/drg_txt.html

6. Answering this question requires familiarity with graphs of the basic trigonometric functions and their transformations. *A* through *D* are variations of the *sine graph*; *E* is a *cosine graph*. Values on the *y axis* represent the function outputs; *0* through *6.28* on the *x axis* correspond to *0* radians (*0*°) through 2π radians (*360*°). * $2\pi = 2(3.14) = 6.28$ The function *y* = *A sin* Θ is not shifted left or right, but its amplitude is greater than one. Only graph *A* fits these criteria.

