College Algebra

1. A geometric sequence is a number series in which each successive term results from multiplying or dividing* the previous term by a constant value called a common ratio, \boldsymbol{r}.

Formula for calculating $\boldsymbol{r}: \quad \boldsymbol{r}_{n}=\frac{\mathbf{a}_{n}}{\mathbf{a}_{n-1}}$
*n designates the term number ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$, etc).

Applying this formula to the given geometric sequence (16, $-4,1,1 / 4, \ldots$)
$r_{2}=\frac{-4}{16}=-\frac{1}{4}, r_{3}=\frac{1}{-4}=-\frac{1}{4}, r_{4}=\frac{-1 / 4}{1}=-\frac{1}{4}$
reveals a common ratio (r) of -1/4.
Formula for the $\mathrm{n}^{\text {th }}$ term of a geometric sequence: $\quad \boldsymbol{a}_{n}=\boldsymbol{a}_{1} \boldsymbol{r}^{\boldsymbol{n}-1}$
To find the $5^{\text {th }}$ term: $a_{5}=16(-1 / 4)^{5-1}=16(-1 / 4)^{4}=16(1 / 256)=16 / 256=$

1/16

*Without knowing the formulas above, you might also observe that dividing each term by -4 results in the next term: $\frac{16}{-4}=\mathbf{- 4}, \frac{-4}{-4}=\mathbf{1}, \frac{1}{-4}=-\frac{\mathbf{1}}{4}, \frac{-1 / 4}{-4}=\frac{\mathbf{1}}{\mathbf{1 6}}$

Try these sites for more information and practice with geometric sequences:
http://www.mathguide.com/lessons/SequenceGeometric.html
http://www.purplemath.com/modules/series3.htm
http://www.regentsprep.org/Regents/math/algtrig/ATP2/GeoSeq.htm
2. Let $\boldsymbol{t}=7$ days and plug this value into each equation.

$$
\begin{aligned}
& A(7)=7^{2}+2(7)=49+14=\underline{63} \\
& B(7)=10(7)=\begin{array}{l}
\frac{70}{\text { Maximum Output }}
\end{array}
\end{aligned}
$$

3. From the table, $f(3)=\mathbf{2}$, so substitute $\mathbf{2}$ for $f(3)$ in $g(f(3))$.

From the table, $\boldsymbol{g}(2)=-3$.

4. The least common denominator of the fractional exponents is $\mathbf{6}$. Multiply by a fraction equivalent to 1 in order to make all denominators the same.

$$
x^{1 / 2(3 / 3)} y^{2 / 3(2 / 2)} z^{5 / 6}=x^{3 / 6} y^{4 / 6} z^{5 / 6}=
$$

The denominator of each fractional exponent is the root of each variable.
Rewrite the expression using radical notation:

$$
\sqrt[6]{x^{3}} * \sqrt[6]{y^{4}} * \sqrt[6]{z^{5}}=\sqrt[6]{x^{3} y^{4} z^{5}}
$$

Try these sites for rules of exponents and more practice with powers and roots:
http://oakroadsystems.com/math/expolaws.htm
http://www.thegreatmartinicompany.com/exponents/exponents-radicals-home.htm| http://www.intmath.com/Exponents-radicals/Exponent-radical.php
5. $\quad A-B=\left[\begin{array}{cc}2 & -4 \\ 6 & 0\end{array}\right]-\left[\begin{array}{cc}-2 & 4 \\ -6 & 0\end{array}\right]=\left[\begin{array}{ll}(2-(-2)) & (-4-4) \\ (6-(-6)) & (0-0)\end{array}\right]=\left[\begin{array}{cc}4 & -8 \\ 12 & 0\end{array}\right]$

Try this site for more information and practice with matrices:
http://www.maths.surrey.ac.uk/explore/emmaspages/option1.html
6. Use these facts to compare possible values: $f(\boldsymbol{x})=\mathbf{2}^{\boldsymbol{x}}, c>\mathbf{1}, x>\mathbf{1}$
a. If $g(x)=c x$, then $f(g(x))=2^{c x} ; c x>1$, so $2^{c x}>2$.
b. If $g(x)=c / x$, then $f(g(x))=2^{c / x} ; c / x>0$, so $2^{c / x}>1$.
c. If $g(x)=x / c$, then $f(g(x))=2^{x / c} ; x / c>0$, so $2^{x / c}>1$.
d. If $g(x)=x-c$, then $f(g(x))=2^{x-c}$; even if c is greater than x, making the the exponent " $x-c$ " negative, 2^{x-c} is <1 but still >0.
e. If $g(x)=\log _{c} x$, then $f(g(x))=2^{\log _{c} x}$. Let $\log _{c} x=y$ and $c^{y}=x$; since $X>1$, $\mathrm{y}\left(\right.$ or $" \log _{\mathrm{c}} \mathrm{x}$ ") >0. A negative exponent would yield a fraction, and an exponent of 0 would yield 1. Therefore, $2^{\log _{c} x}>0$.

$$
\begin{aligned}
& g(x)=c x \text { yields the greatest value for } f(g(x)) .2^{c x} \text { will always } \\
& \text { result in a value greater than } 2 .
\end{aligned}
$$

```
Try this site for more information about functions:
http://www.themathpage.com/aprecalc/functions.htm
Try this site for more information about logarithms:
    http://people.hofstra.edu/Stefan Waner/realworld/calctopic1/logs.html
```

7. $f(x+y)=f(x)+f(y)$ holds for all real numbers x and y.

For $f(0), x+y=0 ; x=-\boldsymbol{y}$ and $\boldsymbol{y}=-\boldsymbol{x}$. Two cases follow from this information.

1) \boldsymbol{x} and \boldsymbol{y} are the same number with opposite signs (2 and $-2,5$ and -5 , etc.)
Substituting $-x$ for $y, f(0)=f(x+(-x))=f(x-x)=f(x)+f(-x)$.
However, possible values for $f(0)$ cannot be verified before looking
at the next case.
2) \boldsymbol{x} and \boldsymbol{y} are both 0 .
$f(0)=f(0+0)=f(0)+f(0)=2 f(0)$, so
$f(0)=2 f(0)$
$-f(0) \quad-f(0) \quad$ Subtract $f(0)$ from both sides.
$0=f(0) \quad O K, f(0)$ has a value of zero when x and y are zero.
*Solution above provided by Prof. Elias Jureidini, 8/18/2008.
Substituting x for zero $(f(0+0)=f(x+x))$ reveals a fact that can be used to prove $f(0)=0$ when the variables have the same nonzero value with opposite signs.
```
\(f(x+x)=f(x)+f(x)=2 f(x) ;\)
\(f(x+x)\) can also be expressed as \(f(2 x)\), so \(f(2 x)=\mathbf{2 f ( x )}\).
```

Recall $f(0)=f(x+(-x))=f(x-x)=f(x)+f(-x)$.
If $f(2 x)=2 f(x)$, then $f(-x)=-f(x)$.

So, $f(0)=f(x)-f(x)=0$. Again, the value of $f(0)$ is zero!
*Solution above provided by an anonymous tutor at www.mathnerds.com, 8/19/2008.
8. Powers of \boldsymbol{i} repeat the following pattern at intervals of 4:

$$
\begin{aligned}
& i^{1}=\sqrt{-1}=i \\
& i^{2}=\sqrt{-1} * \sqrt{-1}=-1 \\
& i^{3}=\sqrt{-1} * \sqrt{-1} * \sqrt{-1} \\
& -1 \quad i=-i \\
& i^{4}=\sqrt{-1} * \sqrt{-1} * \sqrt{-1} * \sqrt{-1} \\
& -1
\end{aligned}
$$

Therefore, to find i^{23} divide 23 by 4 :

Continued.

A remainder of three means to use first three values in the sequence.
$4 \longdiv { 5 }$
$\frac{20}{3}$

Determine the sum of one interval: $i+i^{2}+i^{3}+i^{4}=i+(-1)+(-i)+1=i-1-i+1=0$
That means the sum of the first 4 complete sequences is zero. So, it is necessary only to calculate the sum of the first 3 terms of a sequence:

$$
i^{21}+i^{22}+i^{23}=i+(-1)+(-i)=i-1-i=-1
$$

Try the following site for more help with powers of \boldsymbol{i} :
http://www.regentsprep.org/Regents/mathb/3c3/powerlesson.htm
9. The formula below is needed to find specific terms in a sequence:

$$
a_{n}=a_{1}+(n-1) d
$$

The first term, $\boldsymbol{a}_{\mathbf{1}}$, is $\mathbf{3}$; however, \boldsymbol{n}, the number of a specific term and \boldsymbol{d}, the common difference between consecutive terms, are unknown.

Two other given values may be used to find \boldsymbol{n} and \boldsymbol{d} : a specific term (the last), or $\boldsymbol{a}_{\boldsymbol{n}}$, is $\mathbf{1 3 6}$, and the sum of the total number of terms is $\mathbf{1 , 3 9 0}$. These values can be plugged into the following formula to find n, number of the last term (136):

$$
S_{n}=1 / 2 * n\left(a_{1}+a_{n}\right)
$$

S_{n} is the sum $\mathbf{1 , 3 9 0}, \boldsymbol{a}_{\boldsymbol{1}}$ is $\mathbf{3}$, and $\boldsymbol{a}_{\boldsymbol{n}}$ is $\mathbf{1 3 6}$. Plugging in these values will yield \boldsymbol{n}, the number corresponding to the term 136.

Continued...

Now, substitute all known values into the formula for the $\boldsymbol{n} \boldsymbol{t h}$ term to find \boldsymbol{d}.

$$
a_{20}=3+(20-1) d
$$

Try these sites for more information about arithmetic sequences.
http://www.mathguide.com/les sons/SequenceArithmetic.html http://www.purplemath.com/m odules/series3.htm

$$
\frac{136}{-3}=\frac{3}{-3}+19 d
$$

$$
133=19 d
$$

$$
19 \quad 19
$$

$$
d=7
$$

Subtract 3 from both sides.

Then divide by 19.
$a_{1}=3$, which was given.
$a_{2}=3+7=10$
$a_{3}=10+7=17$
First three terms are 3,10, and 17.

Geometry

1. Use angle facts to determine which angles are equal.

2. Use facts about the sum of the angles of a triangle and degree measurement of a straight line.

The sum of all angles of a triangle equals $\mathbf{1 8 0}^{\circ}$. So the sum of the two lower angles of $\triangle A B C$ is $180^{\circ}-40^{\circ}=140^{\circ}$.

Since $A B$ and $A C$ are equal, $\angle A B C=\angle A C B$ and they each measure $\frac{1}{2}$ of 140°, or $7 \mathbf{0}^{\circ}$ each.

A straight line equals 180°, so $\angle A C D=$ $180^{\circ}-70^{\circ}=110^{\circ}$.

Try these sites to investigate the sum of angles in a triangle and the sum of angles that form a straight line.
http://argyll.epsb.ca/jreed/math9/strand3/triangle angle sum.htm
http://www.walter-fendt.de/m11e/anglesum.htm
3. The perimeter of the pasture is made up of twenty $\mathbf{1 0} \mathbf{f t}$. segments (which is the distance between each pair of fence posts), plus one segment that is the hypotenuse of a right triangle having two legs of 10 ft . each.

$P=20 \times 10+10 \sqrt{2}=200+10 \sqrt{2}$.
$\sqrt{2}$ is between 1 and 2 , so $10 \sqrt{2}>10$.
Therefore, P > 210.
Use the Pythagorean Theorem to find c,
the hypotenuse: $a^{2}+b^{2}=c^{2}$

\[\)| $10^{2}+\mathbf{1 0}^{2}=c^{2}$ |
| ---: |
| $100+\mathbf{1 0 0}=c^{2}$ |
| $\mathbf{2 0 0}=c^{2}$ |
| $\sqrt{\mathbf{2 0 0}}=c$ |
| $\sqrt{\mathbf{2 5} \times \mathbf{4 \times 2}}=c$ |
| $(5 \times 2) \sqrt{2}=c$ |
| $10 \sqrt{2}=c$ |

\]

4. Use Area = Length \mathbf{X} Width to find the area of the rectangular garden: A=16 X $\mathbf{9}=\mathbf{1 4 4}$.

For a square, all sides are equal, so Length $=$ Width, or $\boldsymbol{A}=\boldsymbol{s}^{2}$.

$$
\text { Let } s^{2}=144 ; \text { therefore, } s=\sqrt{\mathbf{1 4 4}}, \text { and } s=12
$$

5. Use the Pythagorean Theorem to solve for the unknown leg length of the right triangle:

$$
a^{2}+b^{2}=c^{2}(\boldsymbol{a} \text { and } \boldsymbol{b} \text { are leg lengths, and } \boldsymbol{c} \text { is the hypotenuse })
$$

Let $\boldsymbol{a}=$ the unknown leg length. Leg $\boldsymbol{C B}=\mathbf{3}$ and hypotenuse $\boldsymbol{A B} \boldsymbol{=} \mathbf{6}$.

$$
\begin{gathered}
a^{2}+3^{2}=6^{2}, a^{2}+9=36, a^{2}=36-9, a^{2}=27 \\
a=\sqrt{27}=\sqrt{9 \times 3}=\underline{3 \sqrt{3}}
\end{gathered}
$$

6. Arc length is the length of the curve opposite the central angle. The ratio of the degrees in the central angle ($3 \mathbf{0}^{\circ}$) to the degrees in the whole circle $\left(360^{\circ}\right)$ is proportional to the ratio of the arc length (6) to the circle's circumference ($2 \pi r$).
$\frac{\text { central angle }{ }^{\circ}}{\text { whole circle }^{\circ}}=\frac{\text { arc length }}{\text { circumference }}, \quad \frac{30^{\circ}}{360^{\circ}}=\frac{6}{2 \pi r}$. Solve for r (radius).

$$
\begin{aligned}
& \text { Cross multiply: } \frac{30^{\circ}}{360^{\circ}}=\frac{6}{2 \pi r}, 30(2 \pi r)=360(6), 60 \pi r=2160 \\
& r=\frac{2160}{60 \pi}, r=\frac{36}{\pi}
\end{aligned}
$$

Try this site for more information about central angles and arc length:
http://articles.directorym.com/Arc Length And Sectors-a1047348.html
7. Use Volume $=$ Length X Width X Height.
$V_{1}=2 \times 10 \times 6=120 \mathrm{sq} . \mathrm{in}$. and $V_{2}=3 \times 5 \times h=15 h$.
$V_{1}=V_{2}$, so $120=15 h$.

$$
\text { Solve for } h: \frac{120}{15}=\frac{15 h}{15}, h=\frac{120}{15}, h=8 \mathrm{in}
$$

8. Use $\boldsymbol{A}=\boldsymbol{\pi} \boldsymbol{r}^{\mathbf{2}}$ to find the areas of the larger circle and the smaller circle. The radius of the larger circle is equal to the diameter of the smaller circle: $\mathbf{2 r = 2 (5) = 1 0}$.

A $($ larger circle $)=\pi 10^{2}=100 \pi$
$B($ smaller circle $)=\pi 5^{2}=25 \pi$
Subtract: $100 \pi-25 \pi=75 \pi$
9. Find the areas of the middle rectangle and the right triangles on each end.

$$
\begin{aligned}
& \text { Use the Pythagorean Theorem to find the unknown } \\
& \text { legs of the right triangles: } \\
& a^{2}+4^{2}=5^{2}, a^{2}+16=25, a^{2}=9, \underline{a=\sqrt{9}=3 .} \\
& \text { Area of triangle }=1 / 2 \text { base*height }=\frac{3 * 4}{2}=\frac{12}{2}=6 \text {. } \\
& \text { Area of rectangle }=L X W=10 \times 4=40 \text {. } \\
& \text { Area of trapezoid: } 6+40+6=52
\end{aligned}
$$

Alternatively, use the formula for the Area of a trapezoid:
$A=\left(\frac{\text { sum of two bases }}{2}\right) ;$
\boldsymbol{a} is the altitude, or height.

$$
A=4\left(\frac{10+16}{2}\right)=4\left(\frac{26}{2}\right)=4 * 13=52
$$

Try this site for more information about area of a trapezoid:
http://www.mathopenref.com/trapez oidarea.html
10. The triangles are similar, so their sides are proportional.

Try these sites for information about similar triangles:
http://www.regentsprep.org/Regents/ Math/similar/Lstrategy.htm
http://www.mathopenref.com/similar triangles.html
11.

Use the ratios of the known side lengths of each triangle to set up a proportion.

$$
\begin{gathered}
\frac{\text { shorter side of } \Delta 1}{\text { longer side of } \Delta 1}=\frac{\text { shorter side of } \Delta 2}{\text { longer side of } \Delta 2} \\
\frac{18}{\mathbf{1 5 + x}}=\frac{6}{x}
\end{gathered}
$$

Cross multiply and solve for \boldsymbol{x}, which represents the length of the tree's shadow.
$18 x=6(15+x) ; 18 x=90+6 x ; 12 x=90 ; x=\frac{90}{12}=7.5$ Or,
$\frac{\text { shorter side of } \Delta 2}{\text { shorter side of } \Delta 1}=\frac{\text { longer side of } \Delta 2}{\text { longer side of } \Delta 1}$

$$
\frac{6}{18} \Rightarrow \frac{x}{15+x}
$$

$$
6(15+x)=18 x ; 90+6 x=18 x ; 90=12 x ; x=\frac{90}{12}=7.5
$$

Find areas of larger and smaller right triangles (\triangle DFG and $\triangle E F G$, respectively) and subtract; the difference is the area of $\triangle D E G$.

Area of a triangle $=1 / 2$ base $*$ height $=\frac{\boldsymbol{b} * \boldsymbol{h}}{\boldsymbol{2}}$
The height of both right triangles is 10 .

$$
\begin{aligned}
& \Delta D F G=\frac{19 * 10}{2}=19 * 5=95 \\
& \Delta E F G=\frac{7 * 10}{2}=7 * 5=35 \\
& \Delta D F G-\triangle E F G=\triangle D E G \\
& 95-35=60 \quad \text { Area of } \triangle D E G=60 \text { sq. units }
\end{aligned}
$$

Trigonometry

1. The trigonometric functions relate an angle of a right triangle to the ratio of a pair of the triangle's sides. See the diagrams and chart below. * Θ (theta) is the angle measurement in degrees.

$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
$\frac{o p p .}{h y p .}$	$\frac{a d j .}{h y p}$.	$\frac{o p p .}{a d j .}$	$\frac{h y p .}{o p p}$.	$\frac{\text { hyp }}{a d j .}$	$\frac{a d j .}{o p p}$.

Use the fact that $\sin \boldsymbol{\theta}=\frac{\boldsymbol{o p p} .}{\boldsymbol{h y p} .} . \overline{B C}$ is opposite $\angle B A C$, which measures 60°.
$\underline{A B}$, the hypotenuse, measures 8 units; and $\sin 60^{\circ}=0.866$. ${ }^{*}$ The given values for $\cos \mathbf{6 0 ^ { \circ }}$ and $\boldsymbol{t a n} 60^{\circ}$ are not useful in solving for $\overline{\mathbf{A B}}$. Let $\overline{\boldsymbol{B C}}=\boldsymbol{x}$ and substitute known values into $\sin 60^{\circ}=\frac{\boldsymbol{o p p}}{\boldsymbol{h y p}}$.
$0.866=\frac{x}{8} ; x=8(0.866) ; x=6.928 \approx 6.93$

Try these sites for more information on trigonometry and trigonometric functions:
http://www.sparknotes.com/testprep/books/act/chapter10section7.rhtml
http://www.pballew.net/PCU2.pdf
http://www.sosmath.com/trig/Trig2/trig2/trig2.html
http://math.aa.psu.edu/~mark//Math140/trigident.pdf
2. If $\sin \alpha=\frac{\text { opp. }}{\text { hyp. }}=\frac{12}{13}$ and $\cos \alpha=\frac{a d j}{h y p}=\frac{5}{13}$, then $\tan \alpha=\frac{o p p}{a d j}=\frac{12}{5}$
3.

$b=\sqrt{3}$

Use $\sin x^{\circ}=\frac{\boldsymbol{o p p} .}{\boldsymbol{h y p} .}=\frac{1}{2}$ to identify lengths of two of the a right triangle's three sides.

Then use the Pythagorean formula to find the third side:
$a^{2}+b^{2}=c^{2} ; 1^{2}+b^{2}=2^{2} ; 1+b^{2}=4 ; b^{2}=3 ; b=\sqrt{3}$.

$$
\cos x^{\circ}=\frac{a d j}{h y p .}=\frac{\sqrt{3}}{2}
$$

4.

Let $x=$ the height of the balloon from ground.
Use $\boldsymbol{\operatorname { t a n }} \theta^{\circ}=\frac{\boldsymbol{o p p} .}{\text { adj. }}$:
$\tan 57^{\circ}=\frac{1.3}{x} ; x\left(\tan 57^{\circ}\right)=x\left(\frac{1.3}{x}\right) ; \frac{x\left(\tan 57^{\circ}\right)}{\tan 57^{\circ}}=\frac{1.3}{\tan 57^{\circ}} ;$

$$
x=\frac{1.3}{\tan 57^{\circ}}
$$

5.

On the unit circle, the y coordinate reaches a maximum value of 1 at $\boldsymbol{\theta}=\mathbf{9 0}$, or $\boldsymbol{\pi} / \mathbf{2}$ radians. Therefore, $y=\sin 2 x=1$, and the angle measurement $2 \boldsymbol{x}=\boldsymbol{\pi} / \mathbf{2}$.
Solve for \boldsymbol{x} by dividing both sides of the equation by 2.

$$
\frac{2 x}{2}=\frac{\frac{\pi}{2}}{2}, x=\frac{\pi}{2} \times \frac{1}{2}
$$

*Multiply by reciprocal of divisor.

Try this site for more information about the unit circle:
http://www.humboldt.edu/~dlj1/PreCalculus/Images/UnitCircle.html
Try this link for more information about the relationship between degrees and radians:
http://math.rice.edu/~pcmi/sphere/drg txt.html
6. Answering this question requires familiarity with graphs of the basic trigonometric functions and their transformations. \boldsymbol{A} through \boldsymbol{D} are variations of the sine graph; \boldsymbol{E} is a cosine graph. Values on the \boldsymbol{y} axis represent the function outputs; \mathbf{O} through 6.28 on the \boldsymbol{x} axis correspond to 0 radians (0°) through 2π radians (360°). $\boldsymbol{*} 2 \boldsymbol{\pi}=2(3.14)=6.28$
The function $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$ is not shifted left or right, but its amplitude is greater than one. Only graph \boldsymbol{A} fits these criteria.

Amplitude 3;
Period 2π
$y=3 \sin \theta$

C.

Amplitude 1;
Period $\frac{2 / \pi}{3}$
(3 cycles on
graph).
$y=\sin 3 \theta$

Amplitude 1;
Period 2r.
Shifted vertically up 3 units. $y=\sin \theta+3$
D.

Amplitude 1;
Period 2r.
Shifted horizontally right about $\frac{\pi}{6}$ radians
$y=\sin \left(\theta-\frac{\pi}{6}\right)$
E.

*Not a sine graph.
Amplitude 1; Period $\mathbf{2 \pi}$.
$y=\cos \theta$

```
Try this link for graphs of basic trig. functions:
http://www.sparknotes.com/math/trigonometry/graphs/section2.rhtml
Try this link for graphing trig. functions:
http://teachers.henrico.k12.va.us/math/ito 08/08TrigGraphs/8LES2/amp per ps n.pdf
http://colalg.math.csusb.edu/~devel/precalcdemo/circtrig/src/sineshift.html
```


$\tan \theta=\frac{\text { opposite }}{\text { adjacent }} ; \tan \angle A=\frac{12}{a}$
Find $\boldsymbol{a}(\overline{\boldsymbol{A C}}$, which is adjacent to $\angle \boldsymbol{A})$ using the Pythagorean theorem:

$$
a^{2}+b^{2}=c^{2}
$$

$a^{2}+12^{2}=13^{2} ; a^{2}+144=169$
Subtract 25 from each side:

$$
a^{2}=25
$$

Take the square root of each side:

$$
\begin{gathered}
a=\sqrt{25} \\
a=5
\end{gathered}
$$

Therefore, $\tan \angle A=\frac{12}{5}$

